Erdélyi, Dániel Turi, Alexandra

FLUID THERAPY

a practical seminar

2018-19 / 1st semester

Topics

- I. Fluid and electrolyte need
 - Symptoms of dehydration
- II. Enteral rehydration
- **III. Parenteral rehydration**
 - Solutions for intravenous use
 - Fluid plan
 - Strategies, rules
- + Practical excercises

most important stuff in framing

I. How much fluid input is ideal for a child?

- For the healthy?
- For infants / toddlers / children?
- Those with fever?
- Those dehydrated from diarrhoea?
- In renal failure?
- After surgery?

I. How much fluid input is ideal for a child?

Healthy: exactly as much as desired

Daily fluid plan =

maintenance + deficit + future losses

Maintenance fluid (Holliday-Segar method)

- Metabolizing 1 kcal ≈ 1 ml water
- 1-10 kgs: 100 mL/kg/day (100 kcal/kg)
- 11-20 kgs: 1000 mL (kcal) +
 50 mL/kg/d (50 kcal/kg) for wt 11-20kgs
- > 20 kgs: 1500 mL (kcal) +
 20 mL/kg/d (20 kcal/kg) for wt above 20kgs

origin, accuracy, alternatives... 2/3 of above is also enough to prevent dehydration

Exceptions

- Neonate, day 1: 60-80 mLs/kg/day
- Over a week it gradually increases to 150mLs/kg/day, this stays the approximate usual need / oral input throughout infancy

• Fever: extra 10% need for each °C above normal (use average temp. for the day).

EXCERCISE -1: maintenance fluid

Girl, 32 kgs, being prepared for GI endoscopy. What should be the daily iv fluid input?

EXCERCISE -2: maintenance fluid

Boy 15 kg, awaits surgery for a hernia repair. There are delays in the theatre list. How much fluid shall we prescribe?

Fluid therapy in special scenarios

<u>Hyperhydration</u> for e.g. tumour lysis syndrome or for certain toxicology cases:

 $2 \rightarrow 3 \rightarrow 4 \rightarrow \text{max}$. 5 L/m²/d

polyuric renal failure, diabetes insipidus: to compensate losses, no upper limit

Fluid restriction e.g.

in pneumonia, maintenance at 80%, in certain cardiac malformations: 80-70-60% renal failure with oliguria: as per diuresis, anuria: 400 mL/m² (insensible losses)

How accurate calculations are needed?

 Otherwise healthy, not critically unwell child: +50% or -25% deviation will probably not cause trouble.

• Fluid therapy errors in renal failure, cardiac failure or in the critically unwell: pulmonary oedaema or shock may result soon.

Daily electrolyte requirement

- Na: 3-5 mmols/kg/day
- K: 2 mmols/kg/day
- Cl: 2 mmols/kg/day
- Ca, Mg, P: abundant in own stores
- Bicarbonate: usually not needed

As smaller children need more water per kg body weight, the traditional maintenance fluids were more diluted sodium solutions. However, in practice, this may result is hyponatraemia.

Signs of dehidration

children, adults	5 infants		
	MILD	MODERATE	SEVERE
Body weight \checkmark	3-5 %	6-10 %	9-15 % of body weight
Tongue	<u>moist or dry</u>	dry	dry
Fontanel	<u>norm. or sunken</u>	sunken	sunken
Eyes	norm.	<u>sunken</u>	very much sunken
Turgour	norm.	norm.	<u>↓</u>
Skin	warm	warm/cool	<u>cold</u>
UO (ml/kg/hr)	>1	<u>0,5-1</u>	<u><0,5</u>
HR	<u>norm. or mild 个</u>	<u>tachycardia</u>	tachy, pulse thready
BP	norm.	norm.	<u>↓</u>
CRT	< 2 sec	< 2 sec	<u>> 2 sec</u>
Behaviour	norm.	irritability	lethargy

[some sign but well]

[shock or near shock]

Dániel Erdélyi, 2nd Dpt Pediatrics, Semmelweis Univ., Budapest

Signs of dehydration

Further practical points

- coated tongue: aspecific
- lack of tears point to severe or at least moderate dehydration
- lack of cry on venopuncture is a severe worrying sign
- altered consciousnes only occures in the most severe forms shock.
- acetonic breath, Kussmaul-breathing
- history is very important (e.g. fluid input)

Example – estimation of losses

Boy, 12 years, 45 kgs

Suboptimal fluid intake because of viral gastroenteritis and vomiting. No fever, good general condition, dry mucosal membranes, HR 85/min, BP 100/55 mmHg, CRT < 2 sec, skin turgor norm. Last urine: 1 hour ago, previously 4hrs ago

Please calculate an estimated fluid deficit!

II. Oral rehydration

- Contraindications are very rare: acute surgical abdomen, severe dehydration/shock
- Safer than iv rehydration
- First approach: any fluid is good whatever the child accepts.
- Sodium (e.g. salty sticks), potassium (fruits) to give in case of ongoing losses.
- Oral rehydration solutions: most beneficial when ongoing substantial losses, especially diarrhoea

Oralrehydration solutions **ORS** :

- Ingradiants: NaCl, KCl, glucose, (bicarb, citrate), isoozmotic
- <u>Dosing-1</u>, "fluid challenge" in vomiting children: 5-10 mL each 5-10 mins for 2-4 hrs.
- <u>Dosing-2</u>, in diarrhoea: 50-100 mL or 10mL/kg after each stool passed.
- <u>Dosing-3</u>, rapid enteral rehydration: full defecit (even 100 mL/kg) over 4 hrs – standard of care in many western countries.

(The enteral epithelial cells make better calculations than us)

III. Parenteral rehydration I.v. solutions, examples

- Normal Saline, 0.9% ≈150mM NaCl
- (5%) or 10% glucose solution
- Balanced solutions
- 0,45% NaCl + 5% glucose solution
- 0,3% NaCl + 10% glucose solution
- These above with added KCl, either manufactured so or added later

what is this for?

- 5% (or 4,5%) human albumin
- Hydroxyethil-starch (HES) solutions

3% NaCl solution

"Isodex", isoosmotic in some way, not in other...

Dániel Erdélyi, 2nd Dpt Pediatrics, Semmelweis Univ., Budapest

Dániel Erdélyi, 2nd Dpt Pediatrics, Semmelweis Univ., Budapest

Comparison of i.v. infusions

Usual maintenance fluids

- New born: 5% or 10% glucose (dextrose)
- Infant, toddler, child, adult:
 0.9% NaCl + 10 mmol KCl / 500mLs or
 balanced solutions; with 2.5-10% glucose

"maintenance" potassium

Earlier, more diluted sodium solutions were suggested for children:

- Infant, toddler: 0.3% NaCl, 10% glucose
 + 10 mmol KCl / 500mLs
- Child: 0.45% NaCl, 5% glucose
 + 10 mmol KCl / 500mLs
 "none third"
- Adult: 0.9% NaCl solution + 10 mmol KCl/500mLs

Fluid bolus

- 10-20 mLs/kg, in adults 500-1000 mL
- As fast as possible in severe shock
- Less severe cases: over 10-20 min

Thumb rules in i.v. hydration

For fluid boluses (large volumes to infuse fast) only isoosmotic, potassium and sugar free (max. equal to the normal plasma concentrations) solutions are allowed!

Thumb rules in i.v. hydration

- Potassium: maximum 80 mmol/L is allowed i.v.
- Some more strict guidelines advise max. 40 mmol/l for peripheral veins!
- You must assess renal functions before giving potassium!
- Na, Ca, Mg, P, bicarbonate: more concentrated solutions can be given in slow bolus. E.g. 10% Cagluconate and 4,2% bicarbonate can be given neat.
- Glucose: max 12,5% into peripheral veins, max 20% into central veins in children.

Practical rules for iv hydration

- Do not administer real hypoosmotic fluids parenterally!
- Into peripheral veins: fluids with osmotic pressure ≤ 2.5 times that of the plasma are advisable. Into central canulae: more concentrated solutions are also OK.
- If a patient is on exclusive parenteral hydration, electrolytes have to be checked daily.
- Parenteral hydration for over 5 days warrants parenteral nutrition.

Practical points

- For initial correction and for replacement of losses choose isotonic solutions even if you plan to use more dilated saline solutions for maintenance
- First day of iv. fluid therapy, if dehydrated: the first half of the 24-hour plan is given over 8 hours, the second half over 16 hours

Plan = maintenance + deficit + estimated future losses

EXCERCISE / 4 – i.v. rehydration

Girl 5ys, 20 kgs, gets admitted for 2-day history of gastroenteritis. Afebrile, mucosae dry, eyes bit sunken, HR 130/min, BP 88/50 mmHg, CRT < 2 sec, weak but appropriate in behaviour

Lab results arrive: Na 138 mM; K 3,0 mM, creat 50 umol/L

EXCERCISE / 5 – i.v. rehydration

Baby boy, 8 mo, 8 kg arrives with gastroenteritis. Afebrile, pale, apathic, dry mucosae, eyes sunken, fontanel sunken, skin tourgor markedly decreased, HR 180/min, BP 70/25 mmHg, CRT 4-5 sec. ...

Na 139 mmol/l, K 5.2 mmol/l, creat 72 umol/L

Perioperative fluid therapy

Before procedure:

100% maintenance usually Ringer lactate

After surgery:

- Decreased fluid need: 80% maintenance
- Increased Na input needed: typically 0.9% NaCl +/- KCl

Not discussed but important

- hypoosmotic (hyponatraemic) and
- hyperosmotic (hypernatraemic) dehydration

Test questions

- Calculate maintenance fluid, fluid plan
- Sings of dehydration, estimation of losses
- Which solutions can be given as iv bolus
- What fluids can be given as iv infusion